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Abstract. Heat stress in cities is projected to strongly increase due to climate change. The associated health risks will be 8 

exacerbated by the high population density in cities and the urban heat island effect. However, impacts are still uncertain, 9 

which is among other factors due to the existence of multiple metrics for quantifying ambient heat and the typically rather 10 

coarse spatial resolution of climate models. Here we investigate projections of ambient heat for 36 major European cities based 11 

on a recently produced ensemble of regional climate model simulations for Europe (EURO-CORDEX) at 0.11° spatial 12 

resolution (~12.5 km). The 0.11° EURO-CORDEX ensemble provides the best spatial resolution currently available from an 13 

ensemble of climate model projections for the whole of Europe and makes it possible to analyse the risk of temperature 14 

extremes and heatwaves at the city-level. We focus on three temperature-based heat metrics - yearly maximum temperature, 15 

number of days with temperatures exceeding 30 °C, and Heat Wave Magnitude Index daily (HWMId) - to analyse projections 16 

of ambient heat at 3 °C warming in Europe compared to 1981-2010 based on climate data from the EURO-CORDEX ensemble. 17 

The results show that southern European cities will be most affected by high levels of ambient heat, but depending on the 18 

considered metric, cities in central, eastern, and northern Europe may also experience substantial increases in ambient heat. In 19 

several cities, projections of ambient heat vary considerably across the three heat metrics, indicating that estimates based on a 20 

single metric might underestimate the potential for adverse health effects due to heat stress. Nighttime ambient heat, quantified 21 

based on daily minimum temperatures, shows similar spatial patterns as daytime conditions, albeit with substantially higher 22 

HWMId values. The identified spatial patterns of ambient heat are generally consistent with results from global Earth system 23 

models, though with substantial differences for individual cities. Our results emphasise the value of high-resolution climate 24 

model simulations for analysing climate extremes at the city-level. At the same time, they highlight that improving the currently 25 

rather simple representations of urban areas in climate models would make their simulations even more valuable for planning 26 

adaptation measures in cities. Further, our results stress that using complementary metrics for projections of ambient heat gives 27 

important insights into the risk of future heat stress that might otherwise be missed. 28 
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1 Introduction 29 

Global heat stress is projected to strongly increase in the future due to climate change (Gasparrini et al., 2017; Vargas 30 

Zeppetello et al., 2022; Zheng et al., 2021; Schwingshackl et al., 2021; Freychet et al., 2022), and already nowadays record-31 

breaking high temperatures are observed more and more often around the world, such as in Canada in summer 2021 or in 32 

China and Europe in summer 2022. Heat stress can have severe implications for human health, the economy, and the society 33 

as a whole (e.g., McMichael et al., 2006; Gasparrini et al., 2015; Yang et al., 2021; Alizadeh et al., 2022; Orlov et al., 2021), 34 

as it can lead to decreased levels of comfort and reduced labour productivity (Orlov et al., 2021; García-León et al., 2021), 35 

enhanced socioeconomic inequalities (Alizadeh et al., 2022), and increased morbidity and mortality (Gasparrini et al., 2015). 36 

Moreover, as the health risk associated with heat stress is not uniform within the population, heatwaves and extreme 37 

temperatures pose a larger threat to those who are most vulnerable to elevated temperatures, particularly to children, older 38 

adults, and persons with pre-existing conditions (Lundgren et al., 2013). 39 

Various metrics have been developed with the aim to capture the characteristics of heat extremes, including heatwaves, and 40 

their potential evolution in the future (e.g., Perkins and Alexander, 2013; Perkins, 2015). Future changes in heat and heat 41 

extremes are frequently quantified by the change in temperature (e.g., mean or maximum near-surface air temperature) between 42 

a historical reference period and future periods (Sillmann et al., 2013; IPCC, 2021; Coppola et al., 2021). Other studies used 43 

the number of days per year during which certain thresholds are exceeded (e.g., Casanueva et al., 2020; Schwingshackl et al., 44 

2021; Zhao et al., 2015). Likewise, different metrics have been introduced to quantify heatwaves, often based on percentile-45 

based thresholds (e.g., Fischer and Schär, 2010; Suarez-Gutierrez et al., 2020; Perkins-Kirkpatrick and Lewis, 2020). The Heat 46 

Wave Magnitude Index daily (HWMId, Russo et al., 2015) integrates both the magnitude and the length of a heatwave into a 47 

single metric to quantify the heatwave severity. HWMId was applied by several studies to analyse the future risk of heatwaves 48 

(e.g., Dosio et al., 2018; Russo et al., 2017; Forzieri et al., 2016; Zittis et al., 2021). Depending on the considered metric, the 49 

projected spatial patterns of ambient heat projections may vary considerably, highlighting that assessing the future risk from 50 

heat stress requires considering a portfolio of metrics. 51 

The health risk from heat stress is not spatially homogeneous – neither globally nor within a country or a region – owing to 52 

several factors, including variations in local climate conditions, local climate feedbacks (e.g., due to albedo, soil moisture), or 53 

differences in the social environment (e.g., population density, socioeconomic conditions). Temperatures are often amplified 54 

in cities due to the predominance of impervious surfaces and the multitude of anthropogenic heat sources. The resulting urban 55 

heat island (UHI) effect leads to higher levels of ambient heat in cities compared to surrounding areas (e.g., Heaviside et al., 56 

2017). In Europe, our region of study, about 75% of the population lives in urban areas (UN-Habitat, 2011) and the urban 57 

population is projected to grow even further in the future along with an ageing trend (Smid et al., 2019). Larger metropolitan 58 

areas in Europe will become more vulnerable to extreme heat in the coming decades (Smid et al., 2019) and heat mortality in 59 

European cities is projected to significantly increase (Karwat and Franzke, 2021). Cities in Europe or elsewhere are thus 60 

becoming climate hotspots in terms of climate change (Zheng et al., 2021) but also for adaptation and innovation (IPCC, 2022) 61 
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due to the need for adequate strategies to address climate change adaptation. Preventing adverse health outcomes from heat 62 

stress and designing appropriate and effective adaptation measures requires accurate projections and estimates of heatwaves 63 

and temperature extremes. Recently, climate model simulations have reached a spatial resolution high enough to provide such 64 

projections at the city-level. 65 

Analyses of climate and climate change in cities face the challenge of delivering results on spatial resolutions that are high 66 

enough to be relevant for cities while robustly estimating the risk of extreme events. Urban models, which can resolve cities 67 

at scales of ~100 m or even higher, can deliver great spatial details of cities (e.g., Masson et al., 2020), with the trade-off that 68 

often only a limited number of cities are examined (e.g., Goret et al., 2019; Krayenhoff et al., 2020). Analyses with urban 69 

models coupled to climate models often rely on data from a single or a few climate models and are thus not able to adequately 70 

incorporate climate variability to robustly quantify the probability of extreme events. On the other hand, climate model 71 

simulations can be used to quantify climate variability and the risk of extreme events in multiple cities. Guerreiro et al. (2018) 72 

used simulations by general circulation models (GCMs) from the Climate Model Intercomparison Project phase 5 (CMIP5) to 73 

investigate heatwave projections in European cities. However, GCMs do not fully depict local urban climate conditions as the 74 

spatial resolution of GCMs (~100 km) is much coarser than that of urban models and GCMs generally lack a representation of 75 

urban areas. To provide higher spatial resolution and to overcome some of the limitations of GCMs, dynamical downscaling 76 

by regional climate models is frequently applied. This approach has been used multiple times to investigate individual cities 77 

with a single model (e.g., Argueso et al., 2015; Chapman et al., 2019; Keat et al., 2021; Kusaka et al., 2012; Li and Bou-Zeid, 78 

2013; Ramamurthy and Bou-Zeid, 2017; Wouters et al., 2017) but rarely for analysing climate conditions in a large number of 79 

cities and/or with an ensemble of models (e.g., Sharma et al., 2019; Smid et al., 2019; Junk et al., 2019). For Europe, an 80 

ensemble based on regional climate models (RCMs) from the European branch of the Coordinated Regional Downscaling 81 

Experiment (EURO-CORDEX; Jacob et al., 2013; Vautard et al., 2021) is available, providing simulations at a resolution of 82 

0.11° (EUR-11, ~12.5 km), which is fine enough to analyse climate conditions in major European cities at the city-level. The 83 

EUR-11 simulations were evaluated by Coppola et al. (2021) and Vautard et al. (2021) who showed that the EURO-CORDEX 84 

simulations reproduce well the observed spatial temperature distribution in Europe, despite a general cold bias of summer 85 

temperatures of around 1 °C to 2 °C compared to observation-based data from E-OBS (Cornes et al., 2018) in large parts of 86 

Europe. Hot biases of extreme temperatures (i.e., hottest five consecutive days) in mountainous regions are reduced in EURO-87 

CORDEX compared to CMIP5, while a cold bias remains in central and northern Europe and a warm bias in southern Europe 88 

(Iles et al., 2020). Lin et al. (2022) evaluated the representation of HWMId in a subset of the EURO-CORDEX ensemble 89 

against reanalysis data, finding overall good agreement between both datasets and highlighting the added value of RCMs 90 

compared to the driving GCMs for representing small-scale features. 91 

EURO-CORDEX simulations have been used to examine how temperatures and ambient heat are projected to increase in the 92 

future throughout Europe (Vautard et al., 2013; Molina et al., 2020; Coppola et al., 2021) and for a small group of European 93 

cities (Junk et al., 2019; Langendijk et al., 2019; Burgstall et al., 2021), showing that urban areas will be strongly affected by 94 

rising temperatures. The different studies used varying sets of metrics, different model ensembles, and different selections of 95 
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cities. Smid et al. (2019) analysed HWMId projections for European capitals based on eight EURO-CORDEX models at 0.11° 96 

resolution, focusing on the metropolitan areas around the capitals. They found highest HWMId increases in southern European 97 

cities and, additionally, they highlight that exposure to heatwaves also strongly depends on population density. Junk et al. 98 

(2019) analysed projections of several heatwave metrics defined by the Expert Team on Climate Change Detection and Indices 99 

(ETCCDI) for London, Luxembourg, and Rome based on 11 EURO-CORDEX models at 0.11° resolution. The considered 100 

heatwave metrics project strongest increases for Rome, except for the number of heatwaves per year, which the authors explain 101 

by the increasing length of heatwaves, reducing their number. Using wet-bulb globe temperature (WBGT) as a heat metric, 102 

Casanueva et al. (2020) analysed exceedances of WBGT thresholds of 26 °C and 28 °C in Europe based on an ensemble of 39 103 

EURO-CORDEX models (using simulations at both 0.11° and 0.44° resolution). Future exceedances of WBGT>28 °C are 104 

projected to be highest in southern Europe, followed by central Europe, while exceedance rates are negligible in northern 105 

Europe. Based on CMIP5 GCMs, Guerreiro et al. (2018) found that strongest increases in heatwave days are projected for 106 

southern European cities along with substantial increases in coastal cities in northern Europe, while maximum temperatures 107 

of heatwaves are projected to rise most strongly in central Europe. 108 

Here we build on these studies and use simulations by 72 GCM-RCM model combinations of the 0.11° EURO-CORDEX 109 

ensemble to assess projections of ambient heat for 36 major European cities. We focus on near-surface air temperature and 110 

compare three metrics: changes in yearly maximum temperature, the number of days per year on which daily maximum 111 

temperatures exceed 30 °C, and HWMId. To evaluate potential differences in projections for daytime and nighttime conditions, 112 

we additionally consider daily minimum temperature. We first analyse how well the EURO-CORDEX ensemble reproduces 113 

the measured temperature distributions in the selected cities compared to reanalysis and observation-based data. Further, we 114 

quantify how ambient heat is projected to evolve in these cities under global warming according to the three considered heat 115 

metrics. Finally, we evaluate how the choice of metrics affects projections of ambient heat, which can give relevant insights 116 

for designing appropriate adaptation measures to counteract health risks from ambient heat. A holistic analysis of the health 117 

risk from heat stress comprises the factors heat-related hazards, heat exposure, and vulnerability to heat. We focus on the 118 

hazard from extreme heat by employing the three heat metrics, acknowledging that exposure and vulnerability can also vary 119 

strongly across cities (Smid et al., 2019; Sera et al., 2019; Gasparrini et al., 2015). 120 

2 Data and Methods 121 

2.1 Data 122 

2.1.1 Cities 123 

We include 36 major European cities in our analysis. These comprise all European cities with a population of more than 1.2 124 

million, and all European capitals with more than 500,000 inhabitants. We register the coordinates and elevation of each city, 125 
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and whether it is located close to the sea (see Supplementary Table S1). The complete list of cities and their geographic 126 

locations are indicated in Figure 1a. 127 

2.1.2 Climate model data 128 

The analysis is based on 72 GCM–RCM model chains from the EURO-CORDEX ensemble, which covers the European 129 

domain (Jacob et al., 2013, see Supplementary Table S2 for a detailed list of models). EURO-CORDEX simulations use two 130 

different spatial resolutions, 0.11° (EUR-11, ~12.5 km) and 0.44° (EUR-44, ~50 km). We only use data from the higher-131 

resolution EUR-11 simulations, for which typically at least one grid cell falls within the extent of each major European city 132 

(Figure 1b). For our analysis, we use daily maximum temperature (tasmax), daily minimum temperature (tasmin), and monthly 133 

mean temperature (tas), employing data from historical and RCP8.5 simulations for the period 1981-2100 (note that some 134 

model simulations only run until 2099 and one only until 2098). For each city, we use data from the grid cell that is located 135 

closest to the centre of each city centre. The large ensemble of 72 GCM–RCM model combinations allows for a robust 136 

estimation of future ambient heat including the model structural uncertainty, which has been shown to be relevant for 137 

quantifying the risk of urban heatwaves (Zheng et al., 2021). To test the spatial robustness of our results, we additionally 138 

consider data from a box of 3x3 grid cells around the city centres. 139 

We further use simulations from the CMIP5 (24 models) and CMIP6 (24 models) ensembles (using one ensemble member per 140 

model) for comparison with the EURO-CORDEX simulations (see Supplementary Tables S3 and S4 for a detailed list of the 141 

considered CMIP5 and CMIP6 models and ensemble members). We employ data from historical and RCP8.5 simulations 142 

(SSP5-8.5 in case of CMIP6), analysing daily maximum temperature (tasmax) and monthly mean temperature (tas) for the 143 

same period (1981-2100) as for EURO-CORDEX. Analogous to EURO-CORDEX, we use the grid cell closest to the city 144 

centre for our analysis. To evaluate how the downscaling of GCMs by RCMs affects the results, we further consider the CMIP5 145 

model set that is used to drive the 72 EURO-CORDEX RCMs. For this purpose, we create a GCM ensemble, which we denote 146 

as “EURO-CORDEX GCM ensemble”, for which we consider each GCM member as many times as it is used as a driving 147 

GCM in the EURO-CORDEX ensemble. The EC-EARTH ensemble member r3i1p1 (used to drive several EURO-CORDEX 148 

RCMs, see Supplementary Table S2) is not available via the Earth System Grid Federation (ESGF) data portals and we thus 149 

substitute it by the EC-EARTH member r1i1p1 to create the EURO-CORDEX GCM ensemble. 150 

  151 
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 152 

 153 

 154 

Figure 1: Overview of the cities investigated in this study and examples of the spatial resolution of EURO-CORDEX models. 155 

Top: Location of the cities with the background map showing the EURO-CORDEX multi-model median change of annual 156 

maximum temperature (ΔTXx) at 3 °C European warming relative to 1981-2010 (see Section 2.2). Abbreviations in the list of 157 

cities indicate the abbreviated city names used in Figure 7. Bottom: Example of grid spacing used by the majority of EURO-158 

CORDEX models compared to the extent of three cities with different sizes (black polygons).  159 
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2.1.3 Reference datasets 160 

We evaluate the EURO-CORDEX simulations (see Section 3.1) by comparing them against two gridded reference datasets: 161 

1) the E-OBS gridded meteorological dataset, which provides gridded meteorological fields interpolated from weather station 162 

data at 0.1° resolution for Europe (Cornes et al., 2018) and 2) the global reanalysis ERA5-Land, which provides land variables 163 

including 2 m air temperature at a spatial resolution of about 9 km (Muñoz-Sabater et al., 2021). Additionally, we use data 164 

from single weather stations that lie within or close to the considered cities, using data from the Global Surface Summary of 165 

the Day (GSOD; Smith et al., 2011) and from the European Climate Assessment & Development (ECA&D; Klein Tank et al., 166 

2002; Klok and Klein Tank, 2009). We only include data from weather stations with a data record length of at least 20 years. 167 

For all datasets, the evaluation is performed using daily maximum temperatures and daily minimum temperatures in the period 168 

1981-2010. For ERA5-Land, daily maximum and daily minimum temperatures are calculated as maximum and minimum of 169 

the hourly 2 m air temperature data. The land scheme of ERA5-Land does not include representations of urban areas. Hence, 170 

specific climatic conditions in cities (such as the urban heat island effect, UHI) may not be fully represented. For cities, in 171 

which temperature data from weather stations within the city limits are assimilated in ERA5-Land or considered in E-OBS, 172 

such effects might, however, be partly included. 173 

2.2 European mean warming 174 

Regional temperatures and temperature extremes scale linearly with global mean surface air temperature (GSAT; Seneviratne 175 

et al., 2016; Wartenburger et al., 2017; Seneviratne and Hauser, 2020). Uncertainties connected to the underlying climate 176 

scenarios can thus be reduced if expressing future evolutions of regional temperatures as a function of changes in GSAT, 177 

usually calculated relative to pre-industrial (1850-1900) conditions. This approach of expressing climate change in terms of 178 

global warming levels instead of emission-driven or concentration-driven scenarios has been used by several recent studies 179 

(e.g., Schwingshackl et al., 2021; Freychet et al., 2022; Li et al., 2021) and was widely applied in the 6th Assessment Report 180 

of the Intergovernmental Panel on Climate Change (IPCC, 2021). While this approach works well on global scales, it cannot 181 

be applied directly to the regional climate model simulations of EURO-CORDEX, mainly due to two reasons. First, EURO-182 

CORDEX simulations only start in 1950 (some models in 1970) and pre-industrial reference temperatures are therefore not 183 

available. We thus derive changes in mean temperatures relative to the period 1981-2010. Second, the EURO-CORDEX 184 

ensemble projects a lower rate of warming in Europe than the CMIP5 ensemble (Coppola et al., 2021). This discrepancy has 185 

been attributed to several reasons, such as differences in aerosol forcing (Boé et al., 2020; Gutiérrez et al., 2020; Nabat et al., 186 

2020) or diverging trends in cloudiness (Bartók et al., 2017). To account for this discrepancy, we implement the scaling 187 

approach using European mean surface air temperature (ESAT) instead of GSAT based on temperature data from the EURO-188 

CORDEX simulations. We calculate GSAT and ESAT from monthly mean temperature (tas), where ESAT is defined as the 189 

average temperature of a box spanning over Europe from 10° W to 35° E and from 30° N to 70° N. 190 

  191 
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 192 

Figure 2: Warming in Europe in the RCP8.5 scenario (EURO-CORDEX, CMIP5) and SSP5-8.5 scenario (CMIP6) relative to 193 

1981-2010. (a) Change in European mean surface air temperature (ESAT) as a function of time. The dashed purple line 194 

indicates the EURO-CORDEX GCM ensemble (see Section 2.1.2 for more details). (b) Change in ESAT as a function of 195 

change in global mean surface air temperature (GSAT) relative to the reference period 1981-2010. Solid lines in (a) and (b) 196 

indicate the multi-model median and shading the range from 10th to 90th percentile across models. Data in (a) are smoothed 197 

with a 10-year window and data in (b) are interpolated in 0.1 °C steps. The dashed grey line in (b) represents the identity line.198 
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Comparing the warming projections in the CMIP5, CMIP6, and EURO-CORDEX ensembles (Figure 2a) confirms that the 199 

CMIP5 and CMIP6 ensembles project a faster warming in Europe than the EURO-CORDEX ensemble. However, if 200 

considering the EURO-CORDEX GCM ensemble (see Section 2.1.2), the resulting warming projections are very similar to 201 

the projections of the EURO-CORDEX ensemble. This indicates a general agreement between the warming projections of 202 

CMIP5 and EURO-CORDEX averaged over Europe and suggests that the difference in ESAT is mainly connected to the GCM 203 

subset used to drive the EURO-CORDEX RCMs. As ESAT scales well with GSAT (Figure 2b), the warming can also be 204 

directly related to changes in GSAT. 205 

For consistency, we choose to stay within the EURO-CORDEX framework and express our results as a function of ESAT 206 

instead of GSAT, based on temperature data from the EURO-CORDEX simulations. The results are shown for a European 207 

warming of 3 °C relative to 1981-2010. This corresponds to a global warming of 2.5 °C in CMIP5 (2.4 °C to 2.7 °C; 208 

interquartile range across models) and of 2.4 °C in CMIP6 (2.3 °C to 2.6 °C) relative to 1981-2010 and to a global warming 209 

of around 3.1 °C in CMIP5 (3.0 °C in CMIP6) since pre-industrial conditions (1850-1900). For each GCM–RCM model chain 210 

of EURO-CORDEX, we estimate the model-specific time when ESAT increases by 3 °C relative to 1981-2010 using a 20-211 

year window around the first year in which the 20-year average temperature exceeds 3 °C warming. The same approach is 212 

applied to CMIP5 and CMIP6 model data. 213 

2.3 Metrics for quantifying ambient heat 214 

Three heat metrics are used in this study to quantify how ambient heat will change in European cities under global warming. 215 

The selected metrics were applied in various studies to investigate projections of ambient heat in Europe and globally (e.g., 216 

Casanueva et al., 2020; Lin et al., 2022; Coppola et al., 2021; Russo et al., 2015; Dosio et al., 2018). The first metric is the 217 

change in yearly maximum temperature (TXx; based on daily maximum temperature data) between the reference period 1981-218 

2010 and the (model-specific) time when European warming reaches 3 °C relative to 1981-2010. The change in TXx indicates 219 

how strongly extreme temperatures increase due to climate change. 220 

As a second metric we calculate the number of days per year on which daily maximum temperatures (TX) exceed 30 °C at the 221 

time when European warming reaches 3 °C. The threshold of 30 °C is a compromise of being high enough to be relevant for 222 

southern European countries and low enough for northern European countries. While absolute thresholds have been used in 223 

several scientific studies (e.g., Zhao et al., 2015; Schwingshackl et al., 2021; Casanueva et al., 2020), it should be kept in mind 224 

that exceedances of absolute thresholds strongly depend on local climate conditions. To test the sensitivity to the selected 225 

threshold level, we investigate how varying the threshold between 25 °C and 33 °C affects the identified geographic patterns. 226 

Calculating exceedances of fixed thresholds based on climate model data usually requires bias adjustment to correct for 227 

potential model biases (Maraun, 2016). However, we do not apply bias adjustment here due to the lack of reliable reference 228 

data, as urban areas are not specifically represented in the reference datasets ERA5-Land and E-OBS. Consequently, the urban 229 

heat island effect might be underrepresented in these datasets. Instead, we test the effect of bias adjustment by applying a 230 

simple correction that 1) adjusts the mean of the climate model data to ERA5-Land, and 2) adjusts the mean and variability to 231 
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ERA5-Land (i.e., by applying a transformation to standard score). For this purpose, the mean and standard deviation of daily 232 

maximum and daily minimum temperatures in summer (June, July, August) is calculated for each grid cell in a box of 5x5 grid 233 

cells around the centre of each city in the reference period 1981-2010. The resulting values are averaged over the 5x5 box and 234 

used for bias adjustment. The 5x5 box is used to represent the climate conditions within and around each city. The ERA5-235 

Land data is bilinearly interpolated to the grid of each EURO-CORDEX model before calculating the mean and standard 236 

deviation. We use a Kolmogorov-Smirnow test to check whether the bias-adjusted heat metrics are statistically significantly 237 

different from the heat metrics calculated from the original data. 238 

The third metric that we apply is the Heat Wave Magnitude Index daily (HWMId, Russo et al., 2015), which integrates both 239 

the length and the magnitude of a heatwave to calculate its overall strength. In the context of HWMId, heatwaves are defined 240 

as at least three consecutive days with daily maximum temperatures above the 90th percentile of the daily maximum 241 

temperature distribution of all days within a 31-day window in a pre-defined reference period (Russo et al., 2015). For each 242 

day in a heatwave, the HW magnitude (HWM) is calculated by subtracting the 25th percentile of TXx in the reference period 243 

1981-2010 from daily maximum temperature (TX), normalised by the interquartile range of TXx in the reference period: 244 

 245 

HW� = � �� 	 ��
����
�� 	 ��
�� , if TX > TXx��� 
0,      otherwise   (1) 246 

 247 

The sum over all daily HW magnitudes of a heatwave yields HWMId. By definition, HWMId takes into account the interannual 248 

temperature variability of each location. We calculate HWMId using daily maximum temperature (denoted as HWMId-TX) 249 

for the time when European warming reaches 3 °C with 1981-2010 as the reference period. In each year, we identify the 250 

heatwave with the highest HWMId-TX and use it to calculate the 20-year average HWMId-TX. 251 

To represent nighttime conditions, we further calculate the three different metrics based on daily minimum temperature (TN), 252 

i.e., the yearly maximum of daily minimum temperatures (TNx), the number of tropical nights (TN>20 °C), and HWMId based 253 

on daily minimum temperatures (HWMId-TN). 254 

2.4 Statistical analysis 255 

2.4.1 Spatial patterns of ambient heat 256 

To analyse how a city’s geographic location and local climate affect projections of ambient heat according to the three metrics, 257 

we estimate the contribution of different factors for explaining the spatial pattern of ambient heat across European cities. We 258 

separately analyse the spatial correlation of each heat metric with four climatological factors (summer mean daily maximum 259 

temperature !"#$%  and its standard deviation &'(,#$%  in the reference period; change in summer mean daily maximum 260 

temperature )!" and change in its standard deviation )&'( between reference and application periods) and four location 261 
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factors (latitude, longitude, elevation, flag indicating whether a city is located close to the sea). Summer is defined as the 262 

months June, July, and August. 263 

The explanatory variables (i.e., climatological or location factors) may be correlated, and their contributions cannot be strictly 264 

disentangled. We therefore use an approach based on semipartial correlation to quantify the average contribution of each 265 

variable to the total explained variance R2 (Schwingshackl et al., 2018). The squared semipartial correlation measures how 266 

much of the remaining unexplained variance is explained by an explanatory variable that is introduced after several others 267 

have already been considered. If explanatory variables are independent, the sum of the squared semipartial correlation 268 

coefficients yields R2. For correlated explanatory variables, the additional contribution of an explanatory variable can be 269 

estimated by the average R2 increase of adding the variable to all regression models that contain a subset of the other 270 

explanatory variables (Azen and Budescu, 2003; Schwingshackl et al., 2018). If using the averaging method proposed by Azen 271 

and Budescu (2003), the sum of all squared semipartial correlations is equal to R2. The variability of the squared semipartial 272 

correlation estimates is a measure for collinearities between the explanatory variables and can be used as an uncertainty 273 

estimate for the contribution of each explanatory variable. 274 

2.4.2 Relative importance of RCMs and GCMs 275 

We further quantify how much of the variability in ambient heat across the EURO-CORDEX ensemble is due to the choice of 276 

GCMs or RCM, respectively. We follow the variance decomposition method of Sunyer et al. (2015) to calculate the variance 277 

due to RCMs, due to GCMs, and due to the interaction between RCMs and GCMs. As the interaction term cannot be attributed 278 

to either GCMs or RCMs, we interpret it as uncertainty and indicate the contribution of RCMs and GCMs as a range that once 279 

includes and once excludes the contribution of the interaction term. For each heat metric, we calculate the percentage 280 

contribution of RCMs and GCMs to the total variance across all 72 RCM-GCM model chains. 281 

3 Results 282 

3.1 Evaluation of EURO-CORDEX ensemble 283 

To evaluate how well the EURO-CORDEX models reproduce observed temperatures in the 36 major European cities, we 284 

compare their temperature distribution to data from E-OBS, ERA5-Land, and weather stations. Figure 3 shows the distributions 285 

of summer mean daily maximum temperatures in 1981-2010 for all cities as a function of distance from the city centre. Detailed 286 

bias distributions for all cities can be found in Supplementary Figure S1. The distribution of the EURO-CORDEX models 287 

generally matches the reference data well but is often wider than the distributions of the reference datasets (Figure 3). The 288 

EURO-CORDEX simulations reveal a cold bias in many cities lying in the northern and eastern parts of Europe (Dublin, 289 

Helsinki, Kazan, Nizhny Novgorod, Oslo, Saint Petersburg, Stockholm), ranging from -1.3 °C to -2.7 °C relative to E-OBS 290 

and from -0.3 °C to -1.2 °C relative to ERA5-Land. A warm bias – particularly relative to ERA5-Land – is found for several 291 

cities in south-eastern Europe (Belgrade, Bucharest, Kharkiv, Kyiv), ranging from +0.2 °C to +1.0 °C relative to E-OBS and 292 
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from +1.7 °C to +3.2 °C relative to ERA5-Land. ERA5-Land and E-OBS also show systematic differences, with daily 293 

maximum temperatures in ERA5-Land being mostly colder than E-OBS and the weather station data. Consequently, the 294 

magnitude and sign of the EURO-CORDEX biases strongly depend on the reference dataset. The multi-model median of the 295 

EURO-CORDEX ensemble has a warm bias relative to ERA5-Land (+0.5 °C on average across cities) and a cold bias relative 296 

to E-OBS (-0.8 °C on average), which is consistent with the findings of Vautard et al. (2021). 297 

The distributions of daily minimum temperatures in the EURO-CORDEX models also generally match the reference datasets 298 

(Supplementary Figure S2), but in several cities biases are more pronounced than for maximum temperatures. The EURO-299 

CORDEX ensemble has a cold bias relative to E-OBS (-0.6 °C on average; most pronounced in Saint Petersburg, Nizhny 300 

Novgorod, Copenhagen, Lisbon, Madrid) and to ERA5-Land (-0.8 °C on average; most pronounced in Kazan, Helsinki, 301 

Istanbul, Riga, Stockholm). In contrast to the lower daily maximum temperature values in ERA5-Land, daily minimum 302 

temperatures in ERA5-Land are warmer than E-OBS in several of the investigated cities. 303 

In several cities, temperatures change depending on the distance from the city centre (Figure 3, Supplementary Figure S2). E-304 

OBS shows higher temperatures close to the city centre in Budapest, Prague, and Vienna, while for EURO-CORDEX this is 305 

the case in Athens, Brussels, Dublin, Minsk, Munich, Paris, Rome, and Vienna. Yet, these temperature gradients are not 306 

necessarily due to UHI but could also be caused by other factors, such as gradients in elevation. For E-OBS and the weather 307 

station data, the scarce station density close to the city centres as well as the standard conditions for meteorological 308 

measurements (i.e., measurements are taken over grasslands) might be reasons for the lack of pronounced UHI effects. For the 309 

other datasets, this might be due to the missing representation of urban areas in the land surface schemes of ERA5-Land and 310 

in many of the EURO-CORDEX models. 311 

  312 
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 313 

Figure 3: Distribution of daily maximum temperature (TX) in summer for the investigated European cities as function of 314 

distance to the city centre. The plot shows summer (June, July, August) average TX over the period 1981-2010 for EURO-315 

CORDEX (black line and grey shading), ERA5-Land (red-edged grey dots), E-OBS (blue-edged grey dots), and station data 316 

(filled blue dots). The black line for EURO-CORDEX denotes the multi-model median, dark grey shading the interquartile 317 

range across models, and light (very light) grey shading the range from 10th (1st) to 90th (99th) percentile. Only temperatures 318 

on land are included (sea areas are masked).  319 
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3.2 Projections of ambient heat for major European cities 320 

The EURO-CORDEX projections for major European cities show increasing ambient heat under 3 °C European warming with 321 

distinct geographical patterns for the three different metrics (Figure 4). Increases in TXx are largest in southern Europe, 322 

followed by western and eastern Europe, and lower towards northern Europe. The top five cities in terms of TXx increase 323 

(Milan, Madrid, Sofia, Zagreb, Belgrade; numbered from 1 to 5 in Figure 4) are all located in southern Europe but none of 324 

them is located directly close to the sea. Cities in southern Europe located at or close to the sea (e.g., Lisbon, Barcelona, Rome, 325 

Athens, Istanbul) also show substantial TXx increase, yet weaker than the cities situated more inland. 326 

The yearly number of days on which TX exceeds 30 °C shows a clear south-north gradient, with values being highest in 327 

Athens, Madrid, Rome, Bucharest, and Milan (numbered 1 to 5). These cities exceed 30 °C on more than 80 d/y, while the 328 

five cities with lowest exceedance rates (all lying in northern Europe; numbered 32 to 36) experience on average less than 2 329 

d/y above 30 °C. Additionally, local climate conditions can play an important role as well, for example in the case of Barcelona, 330 

Istanbul, and Sofia, which have lower exceedance rates than the surrounding cities. Varying the threshold level between 25 °C 331 

and 33 °C considerably changes the number of yearly exceedance days, but the geographical distribution is not altered much 332 

(Supplementary Figure S3). 333 

HWMId-TX is largest in southern European cities, followed by eastern European cities, with values being highest in Barcelona, 334 

Madrid, Milan, Sofia, and Rome (numbered 1 to 5). In contrast to the other two metrics, cities located in northern Europe also 335 

show high HWMId-TX values (e.g., Oslo, Copenhagen, Stockholm, Helsinki), while lowest HWMId-TX values are projected 336 

in an arc spanning from the Netherlands over northern Germany towards the Baltic states. 337 

Several cities show high levels of ambient heat for all investigated heat metrics (e.g., Athens, Belgrade, Bucharest, Madrid, 338 

Milan, Sofia, Zagreb), while other cities reveal a strong dependency on the metric under consideration. Barcelona, for example, 339 

ranks number one in terms of HWMId-TX, but exceeds 30 °C only rarely. Lisbon has substantial increases in TXx and 340 

temperatures often exceed 30 °C, but HWMId-TX is rather low. Kazan has substantial increases in TXx and high HWMId-TX 341 

values, but TX exceedances above 30 °C are relatively low. Oslo ranks among the cities with weakest changes in TXx and 342 

with lowest TX exceedances above 30 °C, but with high HWMId-TX values. Considering only one metric might thus lead to 343 

unbalanced conclusions about projections of ambient heat for urban areas, potentially underestimating future risks from heat 344 

stress. 345 

  346 
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 347 

Figure 4: Projections of ambient heat at 3 °C European warming according to three different heat metrics for 36 major 348 

European cities as simulated by the EURO-CORDEX ensemble. a) Change in yearly maximum temperature (TXx) between 349 

1981-2010 and 3 °C European warming, b) TX exceedances above 30 °C at 3 °C European warming, and c) Heat Wave 350 

Magnitude Index daily based on TX (HWMId-TX) at 3 °C European warming. The values indicate the multi-model median 351 

of the EURO-CORDEX ensemble. Numbers in the circles from 1 to 5 (32 to 36) indicate the five cities with highest (lowest) 352 

ambient heat according to each metric.  353 
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3.3 Identifying factors influencing the spatial patterns of ambient heat across cities 354 

To better understand the projected spatial patterns of the three heat metrics, we estimate how much of the spatial variance is 355 

explained by different climate factors, representing each city’s temperature climatology as well as its projected changes, and 356 

location factors (Figure 5). Generally, the considered climate factors (TX****+,-, σ��,+,-, ΔTX****, and Δσ��; see Section 2.4 for their 357 

definition) explain more of the spatial patterns than the location factors (latitude, longitude, elevation, location close to sea). 358 

Regarding climate factors (Figure 5a), the spatial pattern of TXx change is mostly influenced by the climate factors ΔTX**** and 359 

Δσ��, while climate conditions in the reference period do not contribute significantly. For TX exceedances above 30 °C, the 360 

maximum temperature in the reference period contributes by far the most, followed by ΔTX****. For HWMId-TX, the strongest 361 

contributions stem from ΔTX**** and σ��,+,-. Regarding location factors (Figure 5b), latitude, longitude, and whether a city is 362 

located close to the sea partly explain the spatial pattern of TXx change, albeit with rather low model agreement. For the TX 363 

exceedances above 30 °C, latitude plays the dominant role, while the contributions of all other factors remain negligible. For 364 

HWMId-TX, the explanatory power of all location factors remains low, with latitude being the only factor that explains some 365 

of the signal. 366 

Across the three metrics, most of the spatial variability can be explained for the TX exceedances above 30 °C (R2=0.78 for 367 

climate and R2=0.59 for location factors; considering only variables with significant contribution in at least 50% of the EURO-368 

CORDEX models), followed by TXx change (R2=0.58 for climate and R2=0.50 for location factors), while the explained 369 

variance of the spatial patterns of HMWId remains rather low (R2=0.42 for climate and R2=0.19 for location factors). The 370 

contribution of the single climate factors depends strongly on the selected metric, whereas for location factors only latitude 371 

plays a major role. All other location factors – despite being statistically significant in some cases – only contribute little to 372 

the total variance explained. The high uncertainty for the contribution of some explanatory variables (e.g., ΔTX**** and Δσ�� for 373 

TXx change, TX****+,- and ΔTX**** for TX exceedances above 30 °C) points to collinearities between these explanatory variables, 374 

which can, however, not be disentangled based on correlation analysis. 375 

  376 
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 377 

Figure 5: Contribution of different explanatory variables to the explained variance (R2) of the spatial patterns of ambient heat 378 

across European cities in the EURO-CORDEX ensemble. Explanatory variables are divided into a) climate factors (summer 379 

mean daily maximum temperature TX****+,- and its standard deviation σ��,+,- in the reference period; change in summer mean 380 

daily maximum temperature ΔTX**** and its standard deviation Δσ�� between the reference period 1981-2010 and 3 °C European 381 

warming) and b) location factors. Coloured bars denote the median estimate for each factor, black whiskers denote the 382 

uncertainty indicated as interquartile range (calculated from the pooled data of all 72 EURO-CORDEX models and eight 383 

regression models). Hatching with lines (crosses) indicates whether at least 50% (90%) of the EURO-CODEX models indicate 384 

statistically significant contribution of the respective explanatory variable (Student’s t-test, p<0.05). Background bars coloured 385 

in light grey indicate total R2 considering all explanatory variables, background bars in dark grey indicate total R2 if considering 386 

only explanatory variables that are statistically significant in at least 50% of the EURO-CORDEX models (Student’s t-test, 387 

p<0.05). The contribution of each climate/location factor is estimated by semipartial correlation (see Section 2.4). 388 
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3.4 Comparing projections of ambient heat during daytime and nighttime  389 

The results presented so far are based on daily maximum temperature and are thus mostly indicative for daytime conditions. 390 

We additionally consider daily minimum temperature (TN) to investigate projections of ambient heat during nighttime, which 391 

play an important role for human health as well, since elevated nighttime temperatures can reduce people’s capacity to recover 392 

and thus weaken their physical conditions (Royé et al., 2021; Thompson et al., 2022). The geographical patterns of the TN-393 

based heat metrics are generally similar to the TX-based patterns (Figure 6) with highest levels of ambient heat in southern 394 

European cities. Yet, several distinct differences are evident. The TNx increase is generally smaller than the TXx increase, 395 

except for cities located at the Baltic Sea, which exhibit a stronger increase in TNx than TXx. Days with TN>20 °C (“tropical 396 

nights”) are rarer than days with TX>30 °C, except for Barcelona and Istanbul, both of which having substantially more days 397 

with TN>20 °C than TX>30 °C (note that no bias adjustment was applied neither for TN>20 °C nor for TX>30 °C; bias-398 

adjusting the mean of the TN distribution based on ERA5-land data even increases the days with TN>20 °C in Barcelona and 399 

Istanbul; not shown). In northern Europe, days with TN>20 °C or TX>30 °C both occur very rarely, and differences are thus 400 

negligible. Varying the TN threshold level between 15 °C and 23 °C considerably changes the number of yearly exceedance 401 

days, but the geographical distribution is not altered much (not shown). HWMId-TN shows much higher values than HWMId-402 

TX, particularly in southern European cities but also in central European cities and in several cities located at the Baltic Sea. 403 

Differences between HWMId-TN and HWMId-TX are particularly large in Istanbul, Barcelona, and Rome. The higher 404 

HWMId-TN values suggest that nighttime heatwaves will become more severe than daytime heatwaves in the investigated 405 

cities as compared to the typical nighttime and daytime climate conditions of the recent past (1981-2010). 406 

  407 
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 408 

Figure 6: As in Figure 4 but for daily minimum temperature (TN) in panels (a) - (c). Panels (d) - (f) show the difference 409 

between ambient heat estimates based on TN and based on daily maximum temperature (TX). Note that the scale for HWMId-410 

TN differs from the HWMId-TX scale in Figure 4.  411 
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3.5 EURO-CORDEX projections of ambient heat in comparison to CMIP5 and CMIP6 projections 412 

We further compare the projections of ambient heat by the EURO-CORDEX, CMIP5, and CMIP6 ensembles for the 36 413 

European cities (Figure 7). The general patterns of CMIP5 and CMIP6 reflect the results of Figure 4, showing a strong TXx 414 

increase in south-eastern and eastern European cities, high TX exceedance rates of 30 °C in southern and some eastern 415 

European cities, and high HWMId-TX values in southern and some northern European cities (note the logarithmic axis for the 416 

latter). In terms of TXx change, the CMIP5 and CMIP6 ensembles generally project a stronger increase in ambient heat than 417 

the EURO-CORDEX models, particularly in south-eastern, eastern, and north-eastern European cities, while, for Lisbon, 418 

Athens, and Istanbul, the EURO-CORDEX ensemble projects stronger TXx increases. Regarding TX exceedances above 30 419 

°C, the EURO-CORDEX ensemble projects much higher exceedance rates than the CMIP5 and CMIP6 ensembles in southern 420 

European cities (e.g., Lisbon, Milan, Athens, Istanbul), whereas the CMIP5 and CMIP6 ensembles show larger exceedance 421 

rates in north-eastern European cities and in Barcelona. The CMIP5 and CMIP6 ensembles project higher HWMId-TX values 422 

in almost all cities except Madrid, Nizhny Novgorod, and Kazan. Differences in HWMId-TX between the CMIP5 and CMIP6 423 

and EURO-CORDEX ensembles are particularly pronounced in Stockholm, Rome, Athens, and Istanbul. The projected 424 

geographical patterns of ambient heat from the CMIP5 and CMIP6 ensembles are generally similar; notable differences are 425 

only found for TX exceedances above 30 °C, where CMIP6 has substantially higher values in southern European cities and 426 

CMIP5 in northern European cities. 427 

To investigate the effect of dynamical downscaling by RCMs, we additionally consider the projections of ambient heat by the 428 

EURO-CORDEX GCM ensemble (dashed purple line in Figure 7; see Section 2.1.2 for its definition). The EURO-CORDEX 429 

GCM ensemble resembles more closely the results of the CMIP5 ensemble than of the EURO-CORDEX ensemble, except for 430 

some cities (e.g., Amsterdam, Copenhagen, Stockholm, Saint Petersburg, Nizhny Novgorod for TXx changes; Rome for TX 431 

exceedances above 30 °C; Lisbon for HWMId-TX). In combination with the fact that the EURO-CORDEX GCM ensemble 432 

shows show very similar ESAT trends to the EURO-CORDEX RCM ensemble (Figure 2a), this indicates that differences in 433 

projections of ambient heat between the EURO-CORDEX and CMIP5 ensembles are mostly connected to the dynamical 434 

downscaling by RCMs. For cities located close to mountains (e.g., Athens) or close to the sea (e.g., Lisbon, Barcelona, 435 

Stockholm), the higher spatial resolution of RCMs should thus deliver more accurate estimates than the more coarsely resolved 436 

GCMs. This is reflected in the large differences between CMIP5 and EURO-CORDEX estimates for several cities, particularly 437 

for TX exceedances above 30 °C and for HWMId-TX. 438 

  439 
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 440 

Figure 7: Projections of ambient heat in European cities for EURO-CORDEX, CMIP5, CMIP6, and the EURO-CORDEX 441 

GCM ensemble. Cities are arranged according to their geographical location, i.e., northern European cities at the top, eastern 442 

European cities on the right, southern European cities at the bottom, and western European cities on the left. a) Change in 443 

yearly maximum temperature (TXx) between 1981-2010 and 3 °C European warming, b) TX exceedances above 30 °C at 3 444 

°C European warming, c) Heat Wave Magnitude Index daily based on TX (HWMId-TX) at 3 °C European warming. Note the 445 

logarithmic axis for the HWMId-TX panel. Lines indicate the multi-model median and shading the interquartile range across 446 

models.  447 
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3.6 Uncertainty of ambient heat projections 448 

To evaluate the robustness of our results, we estimate how strongly the estimates of ambient heat vary across the EURO-449 

CORDEX models and how much they change in space, that is, within a box of 3x3 grid cells around the grid box located 450 

closest to the city centres. The large ensemble of 72 GCM-RCM combinations enables a thorough assessment of the model 451 

uncertainty, which we quantify here as the interquartile range (IQR) across models (Figure 7). Uncertainties of TXx change 452 

lie between 1 °C and 2 °C in almost all cities, with uncertainties being lowest in southern European cities (where uncertainties 453 

are ~1 °C). For TX exceedances above 30 °C, we calculate relative uncertainties (IQR divided by multi-model median; not 454 

shown) to reflect the large variability of exceedance rates across cities. The relative uncertainties of TX exceedances above 30 455 

°C are lowest in southern European cities (between 20% and 60%) except for Barcelona, where the relative uncertainty is 456 

larger than 300% (and the distribution is skewed towards higher values). In contrast to the other metrics, the uncertainties of 457 

HWMId-TX are higher in southern European cities (uncertainties lying between 4 and 8) than in northern European cities 458 

(uncertainties lying between 2 and 6), with uncertainties being highest in Barcelona (IQR = 32) followed by Madrid (IQR = 459 

13). 460 

To quantify the spatial variability of ambient heat, heat metrics are calculated individually for each grid cell in a box of 3x3 461 

grid cells around the city centres. The spatial variability is quantified by how much ambient heat varies over the 3x3 grid cells 462 

(Supplementary Figure S4). In the large majority of cities, the TXx change estimates remain very similar if using the 3x3 box, 463 

indicating that the estimated trends in TXx do not change much within the grid cells surrounding the city centres. Lisbon, 464 

Barcelona, Athens, Helsinki, and Istanbul are the cities with the largest spatial variability in TXx changes. Regarding TX 465 

exceedances above 30 °C, the largest variabilities are found in Lisbon, Barcelona, Athens, Istanbul, Rome, and Sofia. HWMId-466 

TX values show very large spatial variability in Barcelona and Helsinki, and pronounced variability in Istanbul, Copenhagen, 467 

Athens, and Dublin. If only considering grid cells with land fractions larger than 25%, 50%, or 75%, the variability decreases 468 

substantially in almost all the cities with large spatial variability in heat metrics. This suggests that ambient heat strongly differs 469 

between land and sea areas, particularly for HWMId-TX and for TX exceedances above 30 °C. For HWMId-TX this might be 470 

due to the higher TXx variability over land areas than over the sea in the reference period 1981-2010 (Supplementary Figure 471 

S5), resulting in much larger HWMId-TX values over sea than over land. Consequently, cities located close to the sea might 472 

be affected by this stark land-sea contrast, particularly if their climate is strongly influenced by the sea. 473 

We further test how TX exceedances above 30 °C in the grid cell closest to the centre of each city change if applying a simple 474 

bias adjustment method that 1) adjusts the mean of each EURO-CORDEX model to the mean of the ERA5-Land data and 2) 475 

adjusts both the mean and the standard deviation (Supplementary Figure S6, see also Section 2.3 for methodological details). 476 

The most striking effect of bias-adjusting the data is a reduced uncertainty of the projected TX exceedances above 30 °C. 477 

Moreover, the bias-adjusted exceedance rates are statistically significantly lower in 13 cities and higher in 2 cities if only the 478 

mean is adjusted (Kolmogorov-Smirnow test, p<0.05); and lower in 15 cities and higher in 6 cities if both mean and standard 479 

deviation are adjusted. In the remaining cities, the differences are not statistically significant. The effects of bias adjustment 480 
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are largest in Lisbon, Rome, Sofia, and Bucharest with substantially lower exceedance rates in case of bias adjustment. 481 

Adjusting only the mean or adjusting both mean and standard deviation generally yields similar results (differences are largest 482 

in Istanbul and Lisbon) with the latter method tending to yield lower exceedance rates. 483 

The rather complete matrix of RCM-GCM combinations enables us to quantify how much of the variability in ambient heat 484 

across the EURO-CORDEX models is due to the choice of GCMs or RCMs (Figure 8, see section 2.4.2 for methodological 485 

details). The variability across all RCM-GCM combinations is mostly due to RCMs (60% to 75% for TXx change, 60% to 486 

70% for TX exceedances above 30 °C, and 50% to 65% for HWMId-TX), highlighting that the downscaling by RCMs plays 487 

a crucial role for the ambient heat estimates in urban areas. Additionally, several patterns can be identified for certain RCMs 488 

and GCMs, which indicates that the choice of RCMs and GCMs is also important. Among RCMs, projections of ambient heat 489 

in terms of TXx change and HWMId-TX are highest for HadREM3-GA7-05, and in terms of TX exceedances above 30 °C 490 

values are highest for WRF381P, HadREM3-GA7-05, and ALADIN63. Comparatively low increases in ambient heat are 491 

projected by the RCMs HIRHAM5, RACMO22E, and COSMO-crCLIM-v1-1. Differences between GCMs are less 492 

pronounced. Projections of ambient heat are highest for NorESM1-M and CanESM2 in terms of TXx change, for CanESM2, 493 

HadGEM2-ES, and MIROC5 in terms of TX exceedances above 30 °C, and for NorESM1-M, CanESM2, and MIROC5 in 494 

terms of HWMId-TX. It should be noted though that the results for CanESM2 and MIROC5 might be less robust as each of 495 

them is only used twice as driving GCM. Comparatively low increases in ambient heat are projected by CNRM-CM5 and 496 

IPSL-CM5A-MR for TXx change, by EC-EARTH and CNRM-CM5 for TX exceedances above 30 °C, and by CNRM-CM5 497 

and MPI-ESM-LR for HWMId-TX. 498 

  499 
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 500 

 501 

Figure 8: GCM-RCM matrix of EURO-CORDEX models for the change in yearly maximum temperature (TXx) between 502 

1981-2010 and 3 °C European warming, b) TX exceedances above 30 °C at 3 °C European warming, c) Heat Wave Magnitude 503 

Index daily based on TX (HWMId-TX) at 3 °C European warming. Each circle indicates the average value across all 504 

investigated cities for each individual EURO-CORDEX model. Numbers in the circle indicate the ranking of models from 1 505 

(highest ambient heat) to 72 (lowest ambient heat). Multiple ensemble members for a GCM-RCM combination are indicated 506 

as smaller circles.  507 
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4 Discussion 508 

4.1 Interpretation and implications of results 509 

All three analysed heat metrics show strong increases in ambient heat in southern European cities at 3 °C European warming. 510 

Substantial increases in ambient heat are also evident in other European regions; yet, the spatial patterns strongly depend on 511 

the metric under consideration. TXx increases considerably in western and eastern Europe, TX exceedances above 30 °C show 512 

a clear south-north gradient with almost no exceedances in northern European cities, and HWMId-TX yields comparatively 513 

high values in eastern and northern European cities. This has implications for the estimation of future heat stress, as the 514 

projected outcomes can vary strongly depending on the considered metric. For instance, regions in northern Europe that are 515 

usually not considered as very prone to heat stress show relatively high values of HWMId-TX. Since health impacts do not 516 

only depend on universal physiological limits but also on the climate conditions people are used to (Petkova et al., 2014; 517 

Åström et al., 2013), metrics considering the climatology of a region (such as HWMId-TX) can give important insights into 518 

the risk of future heat stress that might otherwise be missed. This also concerns nighttime conditions, as HWMId-TN is even 519 

higher than HWMId-TX (Figure 6). 520 

The identified spatial patterns broadly agree with results of other studies, showing an increase in heatwave risk in southern 521 

Europe along with substantial increases in coastal regions in northern Europe (Guerreiro et al., 2018; Smid et al., 2019; Lin et 522 

al., 2022) – as we find for HWMId-TX – and a clear south-north gradient in exceedances of WBGT>28 °C (Casanueva et al., 523 

2020) – consistent with the patterns of TX exceedances above 30 °C. Guerreiro et al. (2018) found that temperatures during 524 

heatwaves increase strongest in central Europe, while the TXx increases estimated in our study are highest in southern 525 

European cities. This discrepancy between the findings of Guerreiro et al. (2018) and our results could, on the one hand, be 526 

related to the fact that TXx does not directly reflect temperatures during heatwaves. On the other hand, it could also be due to 527 

the more pronounced increase of extreme temperatures in central Europe in CMIP5 compared to EURO-CORDEX 528 

(Supplementary Figure S7).  529 

In some cities, the ranking varies considerably depending on the considered heat metric (particularly in Barcelona, Oslo, 530 

Lisbon, Warsaw, and Berlin; Figure 4), indicating that the choice of metrics may strongly influence projections of ambient 531 

heat in these cities. Additionally, in some cities the projections vary considerably within a box of 3x3 grid cells around the city 532 

centre (Supplementary Figure S4), especially for TX exceedances above 30 °C and HWMId-TX. The variability is generally 533 

largest for cities located close to the sea, particularly for HWMId-TX. This is related to the fact that HWMId-TX values are 534 

generally much higher over the sea than on land, which is mostly due to the low climatological variability of TXx over the sea 535 

(Figure S5). If cities are located close to the sea, the estimated HWMId-TX values may thus strongly depend on how much of 536 

the grid cell located closest to the city centre is covered by land and on how much this land fraction varies across EURO-537 

CORDEX models. In such cases, a more accurate representation of local interactions between land and sea would be necessary 538 

(e.g., higher spatial resolution, accurate representation of advection, consideration of humidity) to generate more robust 539 

projections of ambient heat. 540 
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The spatial patterns of the heat metrics can largely be explained by the local temperature climatology and its projected changes 541 

(see importance of climate factors in Figure 5), with varying importance of the single explanatory factors depending on the 542 

considered metric. The explanatory factors explain most of the spatial variability in TXx change and in TX exceedances above 543 

30 °C but they only partly explain the spatial variability in HWMId-TX. The remaining unexplained variance of the heat 544 

metrics might be connected to the amplified increase of extreme temperatures (Seneviratne et al., 2016; Vogel et al., 2017) 545 

(we use summer mean TX as explanatory factor) or asymmetric changes in the temperature distributions (we use the symmetric 546 

standard deviation of TX as explanatory factor). For HWMId-TX, the relatively large unexplained variance might be 547 

specifically connected to the definition of HWMId, i.e., to the usage of a cut-off temperature to define heatwaves and to the 548 

standardisation based on the climatology of TXx. The same is the case for TX exceedances above 30 °C, which are generally 549 

non-linear due to the usage of the absolute threshold of 30 °C. Among the location factors, the latitude of a city is the most 550 

important factor for explaining the spatial variance, particularly for TX exceedances above 30 °C. Generally, the explained 551 

variance is lower for location factors than for climate factors, indicating that local climate does certainly not only depend on 552 

the coordinates and elevation of a location but also on other local factors, such as the predominant atmospheric circulation or 553 

local feedbacks (e.g., vegetation, soil moisture). As the contribution of the explanatory variables to the explained variance is 554 

quantified based on correlation analysis, definitive cause-effect chains cannot be deduced. Particularly for the climate factors, 555 

the results should thus rather be interpreted as an indication of the extent to which the calculated heat metrics are influenced 556 

by the underlying temperature distribution and its projected future change. 557 

4.2 Limitations and potential improvements 558 

The ~12.5 km spatial resolution of the EUR-11 simulations enables a much more detailed assessment of climate variability 559 

and climate change at the city-level compared to GCMs. Yet, urban temperatures usually exhibit large variability within a city, 560 

i.e., at scales that currently cannot be resolved by the 0.11° EURO-CORDEX ensemble. Urban-resolving climate modelling 561 

may provide a way forward to better quantify climate effects at scales resolving single neighbourhoods (Sharma et al., 2021; 562 

Hamdi et al., 2020), which would add valuable information for assessing the risk of heat stress due to climate change at scales 563 

relevant for local health authorities and city planners. To achieve this, an adequate representation of urban land surfaces in 564 

models is essential. Yet, several land surface modules of models in the 0.11° EURO-CORDEX ensemble do not have dedicated 565 

urban tiles or only employ a simplified representation of urban areas. The CORDEX Flagship Pilot Study on URBan 566 

environments and Regional Climate Change (URB-RCC) is tackling this issue and may provide important advancements for 567 

urban-resolving climate modelling in the medium term. Investing in the development of urban parameterisations might have 568 

further benefits, as their implementation in climate models may also affect regional climate outside the urban areas (Katzfey 569 

et al., 2020). The reanalysis ERA5-Land does not have a dedicated urban tile either, which makes it less suitable for analysing 570 

climate at city-level despite its high resolution of about 9 km. Moreover, the missing urban representation currently prevents 571 

the usage of ERA5-Land as a reference dataset for the application of bias adjustment to investigate urban climate. Climate data 572 

from E-OBS might reflect urban conditions to the extent weather stations are present in cities. However, weather stations are 573 
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located on grassland, and E-OBS might thus underestimate ambient heat in heavily sealed parts of cities, such as city centres, 574 

inner-city residential areas, or industrial zones. In case data from paired weather stations inside a city and in its rural 575 

surroundings are available, a bias adjustment procedure for urban areas developed by Burgstall et al. (2021) can be applied to 576 

adjust climate model data to urban conditions. 577 

In our analysis, we do not find any pronounced UHI effects (Figure 3, Supplementary Figure S2), which is likely related to the 578 

incomplete representation of urban areas in RCMs. As UHI is projected to only intensify gradually due to global warming 579 

(Huang et al., 2019; Koomen and Diogo, 2017), our results for TXx change and HWMId should not be affected much by the 580 

lack of UHI. However, the estimated exceedance rates of TX>30 °C and TN>20 °C would be impacted by UHI as they rely 581 

on absolute temperature thresholds. As UHI might be elevated during heatwaves (Ward et al., 2016), ambient heat could be 582 

underestimated if urban areas are not well represented in land surface modules. In addition, cities also differ in other parameters 583 

and variables, such as roughness length and soil moisture, from the land cover that models currently use in urban areas, which 584 

might affect our results beyond UHI.  585 

Differences in climate forcing or process implementation between the CMIP5, CMIP6, and EURO-CORDEX ensembles, such 586 

as differences in aerosol forcing (Boé et al., 2020; Gutiérrez et al., 2020; Nabat et al., 2020), or diverging trends in cloudiness 587 

(Bartók et al., 2017), might further explain discrepancies in climate projections (Taranu et al., 2022). Additionally, several 588 

EURO-CORDEX models do not consider plant physiological CO2 effects and thus likely underestimate extreme temperatures 589 

(Schwingshackl et al., 2019). Although the latter effect is confined to vegetated surfaces and should thus be less relevant in 590 

heavily sealed urban areas, it might still influence urban temperatures if the land cover currently used by RCMs in urban areas 591 

includes vegetation. This might partly explain the lower ambient heat projections of the EURO-CORDEX ensemble compared 592 

to the CMIP5 and CMIP6 ensembles, particularly in eastern and northern Europe. 593 

The usage of absolute thresholds for estimating the number of exceedance days (i.e., 30 °C for daily maximum temperatures 594 

and 20 °C for daily minimum temperatures) does not reflect that temperatures vary considerably across European cities. 595 

Consequently, the number of exceedance days differs substantially across cities, showing a strong gradient from southern to 596 

northern European cities. While absolute temperature thresholds are a common metric used for projections of ambient heat 597 

(e.g., Schwingshackl et al., 2021; Zhao et al., 2015; Kjellstrom et al., 2009; Casanueva et al., 2020), epidemiological studies 598 

show continuous increases in health impacts above the locally optimal temperature (i.e., the temperature where minimal effects 599 

of health outcomes are observed, Gasparrini et al., 2015). Moreover, epidemiological studies increasingly use the temperature 600 

percentile instead of absolute temperatures as exposure metric to better reflect local conditions (Masselot et al., 2023). 601 

5 Conclusions 602 

EURO-CORDEX simulations at 0.11° resolution (EUR-11, ~12.5 km) deliver climate data for Europe at a resolution that is 603 

high enough to analyse projections of ambient heat at the city-level (Figure 1). The temperature distributions of the EURO-604 

CORDEX models generally agree with data from ERA5-Land and E-OBS in the 36 major European cities investigated, despite 605 
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of a slight TX warm bias compared to ERA5, a slight TX cold bias compared to E-OBS, and a TN cold bias relative to both 606 

ERA5-Land and E-OBS (Figure 3, Supplementary Figure S2). 607 

Using three different metrics to quantify ambient heat at 3 °C warming in Europe relative to 1981-2010 (i.e., changes in TXx, 608 

number of days with temperatures exceeding 30 °C, and HWMId), we find that ambient heat is projected to increase throughout 609 

the 36 major European cities investigated. Southern European cities will be particularly affected by high levels of ambient 610 

heat, but depending on the considered metric, cities in central, eastern, and northern Europe may also experience substantial 611 

increases in ambient heat (Figure 4). Nighttime HWMId increases even more strongly than daytime HWMId (Figure 6), with 612 

potentially severe implications for health (He et al., 2022). In several cities, the projected levels of ambient heat strongly 613 

depend on the considered metric, such as in Barcelona, Oslo, Lisbon, and Warsaw. This indicates that estimates based on a 614 

single metric might not appropriately reflect the risks of adverse health effects due to ambient heat in a warmer climate. 615 

We further analyse the spatial patterns of the ambient heat projections in light of the underlying temperature climatology and 616 

its projected changes and the location of the different cities (Figure 5). Changes in TXx are mostly connected to projected 617 

changes in the mean and variability of TX, TX exceedances above 30 °C depend mostly on the average TX value in the 618 

reference period and its projected change, and the spatial patterns of HWMId are partly explained by changes in TX and the 619 

variability in the reference period. Regarding the location of cities, latitude plays the predominant role for explaining the spatial 620 

patterns, while the other factors (longitude, elevation, location close to sea) only have limited explanatory power. 621 

The EURO-CORDEX ensemble estimates lower increases in TXx and lower HWMId values than the CMIP5 and CMIP6 622 

ensembles in the majority of the analysed cities at 3 °C European warming (Figure 7). Yet, the EURO-CORDEX ensemble 623 

has higher TX exceedance rates of 30 °C in several cities, particularly in southern Europe. This discrepancy can be due to 624 

several factors, such as differences in forcing (Boé et al., 2020; Gutiérrez et al., 2020; Nabat et al., 2020), differences in process 625 

implementation (e.g., Bartók et al., 2017; Schwingshackl et al., 2019; Taranu et al., 2022), or the higher spatial resolution of 626 

EURO-CORDEX models being able to better represent local climate conditions. Yet, several EURO-CORDEX models do not 627 

represent urban areas, and the specific climate conditions in urban areas might thus not be fully represented. 628 

The large ensemble of 72 EURO-CORDEX simulations enables a thorough uncertainty assessment, quantified by the spread 629 

across models. The uncertainties of TXx change are generally relatively low (around 1 °C to 2 °C in all cities). For TX 630 

exceedances above 30 °C, relative uncertainties range from 20% to 60% in most southern European cities but are higher in 631 

northern European cities due to their lower TX exceedance rates of 30 °C. Applying a simple bias adjustment (see Section 2.3) 632 

reduces the uncertainties of the projected TX exceedances above 30 °C in all cities and yields lower exceedance rates in about 633 

40% of the cities. The estimates of ambient heat show high spatial variability around the city centre in cities located close to 634 

the shore. Particularly for HWMId, the estimates differ substantially depending on the presence of water or land in the 635 

respective grid cell (Supplementary Figure S4). Accurate representations of land and sea and of their interplay are thus essential 636 

for quantifying ambient heat in coastal cities. 637 

Our analysis provides an important contribution to estimate ambient heat in 36 major European cities by considering three 638 

different metrics and using data from high-resolution RCM simulations. Future studies would benefit from a more 639 
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comprehensive representation of urban areas in models, which might be developed by the CORDEX Flagship Pilot Study on 640 

URBan environments and Regional Climate Change (URB-RCC) for RCMs. Systematically and completely including urban 641 

tiles in the land surface modules of the EURO-CORDEX RCMs and in ERA5-Land would allow for an even more accurate 642 

estimation of ambient heat at the city-level. Further, the coupling of urban models with regional climate models might pave 643 

the way for detailed analyses of heat stress in cities by combining the high spatial resolution of urban models with the climate 644 

variability estimates from RCMs. Such an analysis could provide an important step forward towards a comprehensive analysis 645 

of ambient heat in European cities, which could be combined with estimates of exposure and vulnerability to comprehensively 646 

quantify future risk of heat extremes. 647 

Cities are expected to increasingly become climate hotspots due to their high population density and the local climate 648 

conditions that are partly influenced by how cities are structured. At the same time, their large innovation potential also gives 649 

cities the opportunity to lead the way in implementing climate adaptation strategies. Providing detailed and accurate data about 650 

ambient heat projections at the city-level is essential to enable cities to plan specific and effective adaptation measures against 651 

future heat extremes. 652 
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